Improving the efficacy of phenolic extract from Pimpinella affinis in edible oils through nanoencapsulation: Utilizing chitosan and Salvia macrosiphon gum as coating agents

Author:

Abbasi Habib12,Tavakoli Javad3ORCID,Zare Fahimeh3,Salmanpour Mohsen4

Affiliation:

1. Department of Chemical Engineering Jundi‐Shapur University of Technology Dezful Iran

2. Department of Nutrition Sciences, Ewaz School of Health Larestan University of Medical Sciences Larestan Iran

3. Department of Food Science and Technology, Faculty of Agriculture Jahrom University Jahrom Iran

4. Cellular and Molecular Biology Research Center Larestan University of Medical Sciences Larestan Iran

Abstract

AbstractIn the present study, a phenolic extract derived from the Pimpinella affinis plant underwent nanoencapsulation. The nanoencapsulation process employed chitosan, Salvia macrosiphon gum (SMG), and a chitosan–SMG complex (1:1) (CCS) as coating agents. The evaluation of nanoemulsions encompassed measurements of particle size, polydispersity index (PDI), ζ‐potential, encapsulation efficiency, and intensity distribution parameters. The overall results of these assessments indicated that the nanoemulsion coated with CCS exhibited the most favorable characteristics when compared to other treatments. Subsequently, this specific nanoencapsulated sample was utilized to enhance the oxidative stability of canola oil at concentrations of 100, 200, and 300 ppm (parts per million). Oxidative stability tests, assessed through the total oxidation value (TOTOX) index, highlighted the superior performance of the nanoencapsulated extract, particularly at a concentration of 300 ppm. This enhancement can be attributed to the increased release of phenolic compounds from the CCS coating into the canola oil. The findings illustrate that the nanoencapsulation process can significantly enhance the efficacy of P. affinis extract in improving the oxidative stability of canola oil.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3