The role of dark pattern stimuli and personality in online impulse shopping: An application of S‐O‐R theory

Author:

Abbott Rebecca1,Sin Ray2ORCID,Pedersen Christian3,Harris Ted4,Beck Talia5,Nilsson Simon4,Dong Tracy4,Wang Yi6,Li Yue4

Affiliation:

1. Sociology University of Illinois at Chicago Chicago Illinois USA

2. EarnIn Palo Alto California USA

3. Whisker Labs, Inc Germantown Maryland USA

4. Research Deep Labs, Inc San Francisco California USA

5. AI Engineering Humana, Inc Louisville Kentucky USA

6. APTMetrics Westport Connecticut USA

Abstract

AbstractOnline impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three commonly used website features known as dark patterns. The organism characteristic personality is measured by the big 5 personality traits and persona generated through latent profile analysis. Using the machine learning algorithm XGBoost, impulse purchasing response was predicted separately for each dark pattern stimuli. Results show personality characteristics are important features when predicting consumer impulse purchasing in response to dark pattern messages. Moreover, the personality traits (and personas) most predictive of impulse shopping behavior varied by type of dark pattern. Findings suggest personality influences susceptibility to different dark patterns, indicating a need for tailored interventions to mitigate individual consumer vulnerabilities to impulse shopping.

Publisher

Wiley

Subject

Applied Psychology,Social Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3