CPT1A‐IL‐10‐mediated macrophage metabolic and phenotypic alterations ameliorate acute lung injury

Author:

Wang Muyun1ORCID,Wu Di1,Liao Ximing1,Hu Haiyang2,Gao Jing1,Meng Linlin3,Wang Feilong1,Xu Wujian1,Gao Shaoyong1,Hua Jing1,Wang Yuanyuan1,Li Qiang1,Wang Kun1ORCID,Gao Wei1ORCID

Affiliation:

1. Department of Pulmonary and Critical Care Medicine Shanghai East Hospital, School of Medicine, Tongji University Shanghai China

2. Department of Vascular Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China

3. Second Department of Respiratory and Critical Care Medicine The Fourth People's Hospital of Jinan Shandong China

Abstract

AbstractBackgroundAcute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common acute respiratory failure due to diffuse pulmonary inflammation and oedema. Elaborate regulation of macrophage activation is essential for managing this inflammatory process and maintaining tissue homeostasis. In the past decades, metabolic reprogramming of macrophages has emerged as a predominant role in modulating their biology and function. Here, we observed reduced expression of carnitine palmitoyltransferase 1A (CPT1A), a key rate‐limiting enzyme of fatty acid oxidation (FAO), in macrophages of lipopolysaccharide (LPS)‐induced ALI mouse model. We assume that CPT1A and its regulated FAO is involved in the regulation of macrophage polarization, which could be positive regulated by interleukin‐10 (IL‐10).MethodsAfter nasal inhalation rIL‐10 and/or LPS, wild type (WT), IL‐10‐/‐, CreCPT1Afl/fl and Cre+CPT1Afl/fl mice were sacrificed to harvest bronchoalveolar lavage fluid, blood serum and lungs to examine cell infiltration, cytokine production, lung injury severity and IHC. Bone marrow‐derived macrophages (BMDMs) were extracted from mice and stimulated by exogenous rIL‐10 and/or LPS. The qRT‐PCR, Seahorse XFe96 and FAO metabolite related kits were used to test the glycolysis and FAO level in BMDMs. Immunoblotting assay, confocal microscopy and fluorescence microplate were used to test macrophage polarization as well as mitochondrial structure and function damage.ResultsIn in vivo experiments, we found that mice lacking CPT1A or IL‐10 produced an aggravate inflammatory response to LPS stimulation. However, the addition of rIL‐10 could alleviate the pulmonary inflammation in mice effectively. IHC results showed that IL‐10 expression in lung macrophage decreased dramatically in Cre+CPT1Afl/fl mice. The in vitro experiments showed Cre+CPT1Afl/fl and IL‐10‐/‐ BMDMs became more “glycolytic”, but less “FAO” when subjected to external attacks. However, the supplementation of rIL‐10 into macrophages showed reverse effect. CPT1A and IL‐10 can drive the polarization of BMDM from M1 phenotype to M2 phenotype, and CPT1A‐IL‐10 axis is also involved in the process of maintaining mitochondrial homeostasis.ConclusionsCPT1A modulated metabolic reprogramming and polarisation of macrophage under LPS stimulation. The protective effects of CPT1A may be partly attributed to the induction of IL‐10/IL‐10 receptor expression.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3