Artificial intelligence in fusion protein three‐dimensional structure prediction: Review and perspective

Author:

Kumar Himansu1,Kim Pora1ORCID

Affiliation:

1. Department of Bioinformatics and Systems Medicine McWilliams School of Biomedical Informatics The University of Texas Health Science Center at Houston Houston Texas USA

Abstract

AbstractRecent advancements in artificial intelligence (AI) have accelerated the prediction of unknown protein structures. However, accurately predicting the three‐dimensional (3D) structures of fusion proteins remains a difficult task because the current AI‐based protein structure predictions are focused on the WT proteins rather than on the newly fused proteins in nature. Following the central dogma of biology, fusion proteins are translated from fusion transcripts, which are made by transcribing the fusion genes between two different loci through the chromosomal rearrangements in cancer. Accurately predicting the 3D structures of fusion proteins is important for understanding the functional roles and mechanisms of action of new chimeric proteins. However, predicting their 3D structure using a template‐based model is challenging because known template structures are often unavailable in databases. Deep learning (DL) models that utilize multi‐level protein information have revolutionized the prediction of protein 3D structures. In this review paper, we highlighted the latest advancements and ongoing challenges in predicting the 3D structure of fusion proteins using DL models. We aim to explore both the advantages and challenges of employing AlphaFold2, RoseTTAFold, tr‐Rosetta and D‐I‐TASSER for modelling the 3D structures.Highlights This review provides the overall pipeline and landscape of the prediction of the 3D structure of fusion protein. This review provides the factors that should be considered in predicting the 3D structures of fusion proteins using AI approaches in each step. This review highlights the latest advancements and ongoing challenges in predicting the 3D structure of fusion proteins using deep learning models. This review explores the advantages and challenges of employing AlphaFold2, RoseTTAFold, tr-Rosetta, and D-I-TASSER to model 3D structures.

Funder

National Institutes of Health

University of Texas Health Science Center at Houston

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3