Lakes protect downstream riverine habitats from chloride toxicity

Author:

Rock Linnea A.1ORCID,Dugan Hilary A.1ORCID

Affiliation:

1. Center for Limnology University of Wisconsin‐Madison Madison Wisconsin USA

Abstract

AbstractFreshwater salinization from anthropogenic activities threatens water quality and habitat suitability for many lakes and rivers in North America. Recognizing that salinization is a stress on freshwater environments globally, research on watershed salt transport is necessary for informed management strategies. Prior to this research, there were few studies that examined salt export regimes along a river–lake continuum to investigate the drivers, temporal dynamics, and modulators of freshwater salinization. Here, we use high‐frequency in situ monitoring to assess specific conductance–discharge (cQ) relationships, chloride concentrations and fluxes, and the role of lakes in downstream salt transport. The Upper Yahara River Watershed in southern Wisconsin, USA, is a mixed urban and agricultural watershed where the lakes' chloride concentrations have risen from < 5 mg L−1 in the 1940s to > 50–80 mg L−1 in 2021. Our results suggest cQ behavior depends on land use, with urban areas exhibiting more frequent mobilization events during stormflow and agricultural areas exhibiting predominantly dilution dynamics. In addition, chloride loading is driven by hydrology and watershed size whereas concentrations and yields are a function of anthropogenic drivers like urbanization. We demonstrate how an in‐network lake attenuates downstream salinity, dampening the hydrologic, anthropogenic, and seasonal patterns observed in rivers upstream of the lake. Importantly, biogeochemical processes in lakes overlay a seasonal signal on salinity that must be considered when investigating temporal dynamics of anthropogenic salinization. This research contributes to understanding of temporal dynamics of salt export through watersheds and can be used to inform management strategies for habitat protection.

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3