Super‐resolved q‐space learning of diffusion MRI

Author:

Chen Zan1,Peng Chenxu1,Li Yongqiang1,Zeng Qingrun1,Feng Yuanjing1

Affiliation:

1. College of Information Engineering Zhejiang University of Technology Hangzhou China

Abstract

AbstractBackgroundDiffusion magnetic resonance imaging (dMRI) provides a powerful tool to non‐invasively investigate neural structures in the living human brain. Nevertheless, its reconstruction performance on neural structures relies on the number of diffusion gradients in the q‐space. High‐angular (HA) dMRI requires a long scan time, limiting its use in clinical practice, whereas directly reducing the number of diffusion gradients would lead to the underestimation of neural structures.PurposeWe propose a deep compressive sensing‐based q‐space learning (DCS‐qL) approach to estimate HA dMRI from low‐angular dMRI.MethodsIn DCS‐qL, we design the deep network architecture by unfolding the proximal gradient descent procedure that addresses the compressive sense problem. In addition, we exploit a lifting scheme to design a network structure with reversible transform properties. For implementation, we apply a self‐supervised regression to enhance the signal‐to‐noise ratio of diffusion data. Then, we utilize a semantic information‐guided patch‐based mapping strategy for feature extraction, which introduces multiple network branches to handle patches with different tissue labels.ResultsExperimental results show that the proposed approach can yield a promising performance on the tasks of reconstructed HA dMRI images, microstructural indices of neurite orientation dispersion and density imaging, fiber orientation distribution, and fiber bundle estimation.ConclusionsThe proposed method achieves more accurate neural structures than competing approaches.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3