MRI‐based measurement of in vivo disc mechanics in a young population due to flexion, extension, and diurnal loading

Author:

Meadows Kyle D.1ORCID,Peloquin John M.1ORCID,Newman Harrah R.1ORCID,Cauchy Peter J. K.1,Vresilovic Edward J.1ORCID,Elliott Dawn M.1ORCID

Affiliation:

1. Department of Biomedical Engineering University of Delaware Newark Delaware USA

Abstract

AbstractBackgroundIntervertebral disc degeneration is often implicated in low back pain; however, discs with structural degeneration often do not cause pain. It may be that disc mechanics can provide better diagnosis and identification of the pain source. In cadaveric testing, the degenerated disc has altered mechanics, but in vivo, disc mechanics remain unknown. To measure in vivo disc mechanics, noninvasive methods must be developed to apply and measure physiological deformations.AimThus, this study aimed to develop methods to measure disc mechanical function via noninvasive MRI during flexion and extension and after diurnal loading in a young population. This data will serve as baseline disc mechanics to later compare across ages and in patients.Materials & MethodsTo accomplish this, subjects were imaged in the morning in a reference supine position, in flexion, in extension, and at the end of the day in a supine position. Disc deformations and vertebral motions were used to quantify disc axial strain, changes in wedge angle, and anterior–posterior (A‐P) shear displacement. T2 weighted MRI was also used to evaluate disc degeneration via Pfirrmann grading and T2 time. All measures were then tested for effect of sex and disc level.ResultsWe found that flexion and extension caused level‐dependent strains in the anterior and posterior of the disc, changes in wedge angle, and A‐P shear displacements. Flexion had higher magnitude changes overall. Diurnal loading did not cause level‐dependent strains but did cause small level‐dependent changes in wedge angle and A‐P shear displacements.DiscussionCorrelations between disc degeneration and mechanics were largest in flexion, likely due to the smaller contribution of the facet joints in this condition.ConclusionIn summary, this study established methods to measure in vivo disc mechanical function via noninvasive MRI and established a baseline in a young population that may be compared to older subjects and clinical disorders in the future.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institute of General Medical Sciences

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3