A combined non‐enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub‐centimeter pulmonary solid nodules

Author:

Lin Rui‐Yu1,Zheng Yi‐Neng1,Lv Fa‐Jin1,Fu Bin‐Jie1,Li Wang‐Jia1,Liang Zhang‐Rui1,Chu Zhi‐Gang1

Affiliation:

1. Department of Radiology The First Affiliated Hospital of Chongqing Medical University Chongqing China

Abstract

AbstractBackgroundRadiomics has been used to predict pulmonary nodule (PN) malignancy. However, most of the studies focused on pulmonary ground‐glass nodules. The use of computed tomography (CT) radiomics in pulmonary solid nodules, particularly sub‐centimeter solid nodules, is rare.PurposeThis study aims to develop a radiomics model based on non‐enhanced CT images that can distinguish between benign and malignant sub‐centimeter pulmonary solid nodules (SPSNs, <1 cm).MethodsThe clinical and CT data of 180 SPSNs confirmed by pathology were analyzed retrospectively. All SPSNs were divided into two groups: training set (n = 144) and testing set (n = 36). From non‐enhanced chest CT images, over 1000 radiomics features were extracted. Radiomics feature selection was performed using the analysis of variance and principal component analysis. The selected radiomics features were fed into a support vector machine (SVM) to develop a radiomics model. The clinical and CT characteristics were used to develop a clinical model. Associating non‐enhanced CT radiomics features with clinical factors were used to develop a combined model using SVM. The performance was evaluated using the area under the receiver‐operating characteristic curve (AUC).ResultsThe radiomics model performed well in distinguishing between benign and malignant SPSNs, with an AUC of 0.913 (95% confidence interval [CI], 0.862–0.954) in the training set and an AUC of 0.877 (95% CI, 0.817–0.924) in the testing set. The combined model outperformed the clinical and radiomics models with an AUC of 0.940 (95% CI, 0.906–0.969) in the training set and an AUC of 0.903 (95% CI, 0.857–0.944) in the testing set.ConclusionsRadiomics features based on non‐enhanced CT images can be used to differentiate SPSNs. The combined model, which included radiomics and clinical factors, had the best discrimination power between benign and malignant SPSNs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3