FIDEL: Fog integrated federated learning framework to train neural networks

Author:

Kumar Aditya1,Srirama Satish Narayana1

Affiliation:

1. Cloud & Smart Lab, School of Computer and Information Sciences University of Hyderabad Hyderabad Telangana India

Abstract

AbstractTechnological advancement in the digital era has continued to produce voluminous amounts of data through various devices. Even though data is produced distributively, it needs to be accumulated centrally for processing, analysis, and knowledge extraction that faces several challenges such as bandwidth, latency, congestion, privacy, and security. Fog computing paradigm addresses some of these issues, and can be used as a distributed data processing unit. Federated learning trains a shared model over distributed nodes. However, a fog node can not process continuously growing data due to computational limitations. In this paper, we propose FIDEL: a fog integrated federated learning framework for neural network training using resource‐constrained devices. The federation of resource‐constrained Internet of Things (IoT) devices creates a shared global model trained on local data, which is generalized on the unseen dataset for prediction/inferences. We have also designed an online training scheme to process continuous data with limited compute resources. The FIDEL supports both synchronous and asynchronous federate learning that empowers resource‐constrained devices to train machine learning models. To test the learning capabilities of the FIDEL, we have trained three neural networks (i) Shallow network; (ii) Deep Network; (iii) Convolutional Neural Network (CNN) models for human position detection in industrial IoT setup on rapidly changing datasets. The experimental results show that the framework can learn input–output relationships with significantly high accuracy. The overall system efficiency of the framework is reasonable in terms of latency and memory usage for resource‐constrained devices.

Funder

Science and Engineering Research Board

Publisher

Wiley

Subject

Software

Reference31 articles.

1. Internet of Things (IoT): A vision, architectural elements, and future directions

2. HolstA.Volume of data/information created captured copied and consumed worldwide from 2010 to 2025.2023.

3. A decade of research in fog computing: Relevance, challenges, and future directions

4. McMahanB MooreE RamageD HampsonS ArcasBA.Communication‐efficient learning of deep networks from decentralized data. Paper presented at: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017. vol 54; 2017; Fort Lauderdale FL:1273‐1282.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3