Recent advances on monolithic perovskite‐organic tandem solar cells

Author:

Xie Guanshui1,Li Huan1,Qiu Longbin1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality Southern University of Science and Technology Shenzhen China

Abstract

AbstractPerovskite‐organic tandem solar cells (TSCs) have emerged as a groundbreaking technology in the realm of photovoltaics, showcasing remarkable enhancements in efficiency and significant potential for practical applications. Perovskite‐organic TSCs also exhibit facile fabrication surpassing that of all‐perovskite or all‐organic TSCs, attributing to the advantageous utilization of orthogonal solvents enabling sequential solution process for each subcell. The perovskite‐organic TSCs capitalize on the complementary light absorption characteristics of perovskite and organic materials. There is a promising prospect of achieving further enhanced power conversion efficiencies by covering a broad range of the solar spectrum with optimized perovskite absorber, organic semiconductors as well as the interconnecting layer's optical and electrical properties. This review comprehensively analyzes the recent advancements in perovskite‐organic TSCs, highlighting the synergistic effects of combining perovskite with a low open‐circuit voltage deficit, organic materials with broader light absorption, and interconnecting layers with reduced optical and electrical loss. Meanwhile, the underlying device architecture design, regulation strategies, and key challenges facing the high performance of the perovskite‐organic TSCs are also discussed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3