Regulating lithium affinity of hosts for reversible lithium metal batteries

Author:

Liu Hao1,Ji Yuchen1,Li Yang2,Zheng Shisheng13,Dong Zihang4,Yang Kai5,Cao Aimin1,Huang Yuxiang1,Wang Yinchao1,Shen Haifeng6,Zhang Shao‐jian6,Pan Feng1,Yang Luyi1ORCID

Affiliation:

1. School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen Guangdong China

2. Institute of Process Equipment, College of Energy Engineering Zhejiang University Hangzhou Zhejiang China

3. College of Energy Xiamen University Xiamen Fujian China

4. School of Environment and Energy Peking University Shenzhen Graduate School Shenzhen Guangdong China

5. Advanced Technology Institute, Department of Electrical and Electronic Engineering University of Surrey Guildford Surrey UK

6. School of Chemical Engineering The University of Adelaide Adelaide South Australia Australia

Abstract

AbstractLithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3