Expanding from materials to biology inspired by biomineralization

Author:

Wang Qi1,Hu Lishan1,Wang Xiaoyu2,Tang Ruikang13ORCID

Affiliation:

1. Department of Chemistry Zhejiang University Hangzhou Zhejiang China

2. Qiushi Academy for Advanced Studies Zhejiang University Hangzhou Zhejiang China

3. State Key Laboratory of Silicon and Advanced Semiconductor Materials Zhejiang University Hangzhou China

Abstract

AbstractBiomineralization is the intricate process by which living organisms orchestrate the formation of organic–inorganic composites by regulating the nucleation, orientation, growth, and assembly of inorganic minerals. As our comprehension of biomineralization principles deepens, novel strategies for fabricating inorganic materials based on these principles have emerged. Researchers can also harness biomineralization strategies to tackle challenges in both materials' science and biomedical fields, demonstrating a thriving research field. This review begins by introducing the concept of biomineralization and subsequently shifts its focus to a recently discovered chemical concept: inorganic ionic oligomers and their cross‐linking. As a novel approach for constructing inorganic materials, the inorganic ionic oligomer‐based strategy finds applications in biomimetic regeneration and repair of hard tissues, such as teeth and bones. Aside from innovative methods for material fabrication, biomineralization has emerged as an alternative method for tackling biomedical challenges by integrating materials with biological organisms, facilitating advancements in biomedical fields. Emerging material‐biological integrators play a critical role in areas like vaccine improvement, cancer therapy, universal blood transfusion, and arthritis treatment. This review highlights the profound impact of biomineralization in the development and design of high‐performance materials that go beyond traditional disciplinary boundaries, potentially promoting breakthroughs in materials science, chemical biology, biomedical, and numerous other domains.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shortening electron transfer distance to enhance chemicals and electric energy production in Escherichia coli;Chemical Engineering Journal;2024-10

2. Mechanism of bacteriophage-induced vaterite formation;Scientific Reports;2024-09-03

3. Effect of Fluoride on the Ion-association of Calcium Phosphate and Crystallization of Hydroxyapatite;Journal of Wuhan University of Technology-Mater. Sci. Ed.;2024-07-05

4. Biomimetic Materials;Biomedical Materials for Multi-functional Applications;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3