Laser constructed bulk oxygen vacancy caused high P doping for boosting the sodium‐storage capability

Author:

Li Zhimeng1,Huang Man1,Chang Bin2,Ge Jinyu1,Xin Di3,Jiang Di1,Liu Hong14,Zhou Weijia1ORCID

Affiliation:

1. Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering University of Jinan Jinan China

2. KAUST Catalysis Center (KCC), Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Kingdom of Saudi Arabia

3. School of Physics and Technology University of Jinan Jinan China

4. State Key Laboratory of Crystal Materials Shandong University Jinan China

Abstract

AbstractDefect‐assisted heteroatom doping can effectively enhance the intrinsic transfer characteristics of carriers in the crystal structure, which advantages over fast and efficient charge storage. In this work, a three‐dimensional self‐supporting titanium dioxide nanoparticle rich in bulk vacancies (L‐TiOx) on titanium substrate is synthesized by pulsed laser. Different from the surface vacancies, the bulk oxygen defects of L‐TiOx cause a uniform and bulk phosphorus (P) doping with a high concentration of ~5.71 at %, which endows the elevated electronic conductivity, and accelerates the transport of Na+. The obtained P‐doped L‐TiOx (LP‐TiOx) as an anode material in sodium‐ion batteries (SIBs) provides a reversible capacity of 400 mAh g−1 at 200 mA g−1, outstanding rate capability of 196 mAh g−1 at 10,000 mA g−1, and maintains stable performance over 1000 cycles. In situ X‐ray diffraction and ex situ high‐resolution transmission electron microscopy show that LP‐TiOx exhibits robust mechanical behavior with almost no lattice change under (de)sodiation. This work supplies a novel idea for high‐concentration bulk heteroatoms doping to enhance the electrochemical performance of SIBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Taishan Scholar Project of Shandong Province

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3