Electrolyte engineering and material modification for graphite‐based lithium‐ion batteries operated at low temperature

Author:

Yin Yue1,Dong Xiaoli1ORCID

Affiliation:

1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai China

Abstract

AbstractGraphite offers several advantages as an anode material, including its low cost, high theoretical capacity, extended lifespan, and low Li+‐intercalation potential. However, the performance of graphite‐based lithium‐ion batteries (LIBs) is limited at low temperatures due to several critical challenges, such as the decreased ionic conductivity of liquid electrolyte, sluggish Li+ desolvation process, poor Li+ diffusivity across the interphase layer and bulk graphite materials. Various approaches have therefore been explored to address these challenges. On the basis of graphite anode and corresponding LIBs, this review herein offers a comprehensive analysis of the latest advances in electrolyte engineering and electrode modification. First, electrolyte engineering is discussed in detail, highlighting the design of new electrolyte formula with broad liquid temperature range, optimized solvation structure, and well‐performed inorganic‐rich solid electrolyte interface. The advances in material modification have been then depicted with the view of improving the solid bulk diffusion rate to show general strategies with excellent performance at low temperatures. Finally, the corresponding challenges and opportunities have also been outlined to shed light on viable strategies for developing efficient and reliable graphite anode and graphite‐based LIBs under low‐temperature scenarios.

Funder

Natural Science Foundation of Shanghai

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3