Multivariate functional outlier detection using the fast massive unsupervised outlier detection indices

Author:

Ojo Oluwasegun Taiwo12ORCID,Fernández Anta Antonio1ORCID,Genton Marc G.3ORCID,Lillo Rosa E.45ORCID

Affiliation:

1. IMDEA Networks Institute Leganés Madrid 28918 Spain

2. Universidad Carlos III de Madrid Getafe Madrid 28903 Spain

3. Statistics Program King Abdullah University of Science and Technology Thuwal 23955‐6900 Saudi Arabia

4. uc3m‐Santander Big Data Institute Getafe Madrid 28903 Spain

5. Department of Statistics Universidad Carlos III de Madrid Getafe Madrid 28903 Spain

Abstract

We present definitions and properties of the fast massive unsupervised outlier detection (FastMUOD) indices, used for outlier detection (OD) in functional data. FastMUOD detects outliers by computing, for each curve, an amplitude, magnitude, and shape index meant to target the corresponding types of outliers. Some methods adapting FastMUOD to outlier detection in multivariate functional data are then proposed. These include applying FastMUOD on the components of the multivariate data and using random projections. Moreover, these techniques are tested on various simulated and real multivariate functional datasets. Compared with the state of the art in multivariate functional OD, the use of random projections showed the most effective results with similar, and in some cases improved, OD performance. Based on the proportion of random projections that flag each multivariate function as an outlier, we propose a new graphical tool, the magnitude‐shape‐amplitude (MSA) plot, useful for visualizing the magnitude, shape and amplitude outlyingness of multivariate functional data.

Funder

Comunidad de Madrid

King Abdullah University of Science and Technology

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3