Au‐Catalyzed Energy Release in a Molecular Solar Thermal (MOST) System: A Combined Liquid‐Phase and Surface Science Study

Author:

Eschenbacher Roman1ORCID,Hemauer Felix2ORCID,Franz Evanie1,Leng Andreas3,Schwaab Valentin2,Waleska‐Wellnhofer Natalie J.2,Freiberger Eva Marie2,Fromm Lukas4,Xu Tao1,Görling Andreas4ORCID,Hirsch Andreas3ORCID,Steinrück Hans‐Peter2ORCID,Papp Christian25ORCID,Brummel Olaf1ORCID,Libuda Jörg1ORCID

Affiliation:

1. Interface Research and Catalysis Erlangen Center for Interface Research and Catalysis Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Germany

2. Lehrstuhl für Physikalische Chemie II Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Germany

3. Lehrstuhl für Organische Chemie II Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany

4. Lehrstuhl für Theoretische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Germany

5. Angewandte Physikalische Chemie Freie Universität Berlin Arnimallee 22 14195 Berlin Germany

Abstract

AbstractMolecular solar thermal systems (MOSTs) are molecular systems based on couples of photoisomers (photoswitches), which combine solar energy conversion, storage, and release. In this work, we address the catalytically triggered energy release in the promising MOST couple phenylethylesternorbornadiene/quadricyclane (PENBD/PEQC) on a Au(111) surface in a combined liquid‐phase and surface science study. We investigated the system by photoelectrochemical infrared reflection absorption spectroscopy (PEC‐IRRAS) in the liquid phase, conventional IRRAS and synchrotron radiation photoelectron spectroscopy (SRPES) in ultra‐high vacuum (UHV). Au(111) is highly active towards catalytically triggered energy release. In the liquid phase, we did not observe any decomposition of the photoswitch, no deactivation of the catalyst within 100 conversion cycles and we could tune the energy release rate of the heterogeneously catalyzed process by applying an external potential. In UHV, submonolayers of PEQC on Au(111) are back‐converted to PENBD instantaneously, even at 110 K. Multilayers of PEQC are stable up to ~220 K. Above this temperature, the intrinsic mobility of the film is high enough that PEQC molecules come into direct contact with the Au(111) surface, which catalyzes the back‐conversion. We suggest that this process occurs via a singlet–triplet mechanism induced by electronic coupling between the PEQC molecules and the Au(111) surface.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz-Zentrum Berlin für Materialien und Energie

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3