Near‐infrared Emissive Indolizine Squaraine Fluorophores as Strong Molecular Viscosity Sensors

Author:

Ndaleh David1ORCID,Meador William E.1ORCID,Smith Cameron1ORCID,Friedman Hannah C.2ORCID,McGuire Madison1,Caram Justin R.2ORCID,Hammer Nathan I.1ORCID,Delcamp Jared H.13ORCID

Affiliation:

1. Department of Chemistry and Biochemistry University of Mississippi University MS 38677 USA

2. Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA 90095 USA

3. Air Force Research Labs Materials and Manufacturing Directorate (RXNC) 2230 Tenth Street B655 Wright-Patterson AFB OH 45433 USA

Abstract

AbstractChanges in the viscosity of intracellular microenvironments may indicate the onset of diseases like diabetes, blood‐based illnesses, hypertension, and Alzheimer's. To date, monitoring viscosity changes in the intracellular environment remains a challenge with prior work focusing primarily on visible light‐absorbing viscosity sensing fluorophores. Herein, a series of near‐infrared (NIR, 700–1000 nm) absorbing and emitting indolizine squaraine fluorophores (1PhSQ, 2PhSQ, SO3SQ, 1DMASQ, 7DMASQ, and 1,7DMASQ) are synthesized and studied for NIR viscosity sensitivity. 2PhSQ exhibits a very high slope in its Forster‐Hoffmann plot at 0.75 which indicates this dye is a potent viscosity sensor. The properties of the squaraine fluorophores are studied computationally via density functional theory (DFT) and time‐dependent (TD)‐DFT. Experimentally, both steady‐state and time‐resolved emission spectroscopy, absorption spectroscopy, and electrochemical characterization are conducted on the dyes. Precise photophysical tuning is observed within the series with emission maxima wavelengths as long as 881 nm for 1,7DMASQ and fluorescence quantum yields as high as 39.5 and 72.0 % for 1PhSQ in DCM and THF, respectively. The high tunability of this molecular scaffold renders indolizine squaraine fluorophores excellent prospects as viscosity‐sensitive biological imaging agents with 2PhSQ giving a dramatically higher fluorescence quantum yield (from 0.3 to 37.1 %) as viscosity increases.

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3