Affiliation:
1. College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 P. R. China
2. State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 P. R. China
Abstract
AbstractConstructing a catalyst capable of reducing CO2 through photoreduction in aqueous environments presents a significant challenge. In this study, we present the synthesis of BiVO4@NiCo2O3 heterojunction using a straightforward hydrothermal method for CO2 photoreduction. The sample with the optimal loading ratio demonstrates a CO generation rate of 7.202 μmol ⋅ g−1 ⋅ h−1, which is twice that of pure BiVO4 (3.626 μmol ⋅ g−1 ⋅ h−1) and 1.5 times that of pure NiCo2O3 (4.726 μmol ⋅ g−1 ⋅ h−1). Analysis using XPS and EPR techniques suggests that electron transfer at the interface of the heterojunction facilitates the separation of photogenerated charge carriers, thereby enhancing the efficiency of the photocatalytic process. This investigation offers a viable approach for developing photocatalysts for CO2 reduction in aqueous environments.
Funder
National Natural Science Foundation of China