Enhanced Piezo‐photocatalytic Performances of AgNbO3 Materials for Dye Decomposition Via Polarization Engineering

Author:

Yang Xue1,Liu Xiaoxue2,Cai Wei2ORCID,Wang Zhenhua2,Huang Rui1,Rao Zeping2,Zhang Chunyan2,Fu Chunlin2

Affiliation:

1. School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing 401331 P. R. China

2. School of Metallurgy and Materials Engineering Chongqing University of Science and Technology Chongqing 401331 P. R. China

Abstract

AbstractThe limitation to enhancing photocatalytic performance in photocatalysts lies in the rapid recombination of photo‐induced electrons and holes. Herein, AgNbO3 photocatalysts were synthesized by the hydrothermal method. The effects of hydrothermal temperature on the microstructure and photocatalytic/piezo‐photocatalytic performances of AgNbO3 have been systematically investigated. The AgNbO3 cubes synthesized at 180 °C for 24 h exhibited the best photocatalytic/piezo‐photocatalytic performances among all samples. The corona poling as an important method of polarization engineering is applied to promote further the separation and migration of charge carriers in AgNbO3. The polarized AgNbO3 synthesized at 170 °C exhibited outstanding piezo‐photocatalytic performance, and a degradation rate of 95 % for RhB within 90 min and a high apparent rate constant of 0.02978 min−1 were achieved. On the one hand, the alternating piezoelectric field caused by ultrasonic‐assisted illumination destroyed the shielding effect and enhanced the separation of electron‐hole pairs. On the other hand, polarization engineering induced by corona poling promoted the separation and migration of photo‐induced carriers, thereby realizing more efficient utilization of these charges during the photocatalytic decomposition process. This work presents a facile way to achieve superior piezo‐photocatalytic performances of AgNbO3‐based photocatalyst via polarization engineering.

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3