Tightly Connected Poly(3‐Thiophene Boronic Acid)/g‐C3N4 Heterojunctions for Enhanced Visible‐Light Photocatalytic Hydrogen Production

Author:

Zhang Bing‐Miao1,Li Yong12,Pang Xu‐Long1,Qu Yang1,Li Zhi‐Jun1,Zhao Qi1,Zhang Yi1,Zhu Yan1,Zhang Peng‐Xue1,Qin Chuan‐Li1ORCID

Affiliation:

1. School of Chemistry and Materials Science Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) Heilongjiang University Harbin 150080 P.R. China

2. Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education Qiqihar University Qiqihar 161006 P.R. China

Abstract

AbstractConstructing efficient polymer semiconductor/g‐C3N4 heterojunctions is highly desirable for enhancing the photogenerated charge separation of g‐C3N4 and further improving the solar‐hydrogen production efficiency. Herein, we synthesized poly(3‐thiophene boronic acid)/g‐C3N4 (PTBA/CN) heterojunctions with tight interface contact by a simple wet‐chemical strategy. The resulting ratio‐optimized 3PTBA/CN heterojunction exhibits 8.7 times enhancement of the visible‐light photocatalytic hydrogen production compared to CN. Based on the steady‐state surface photovoltage spectra (SS‐SPS), photoluminescence spectra (PL), ⋅OH amount measurements, time‐resolved photoluminescence spectra (TR‐PL), and single‐wavelength photocurrent action spectra, it is confirmed that the enhanced photocatalytic performance is mainly attributed to the promoted photogenerated charge separation resulting from the transfer of high‐level electrons from CN to PTBA via the formed tight interface contact, depending on the hydrogen bonding interactions between the boronic acid groups [−B(OH)2] of PTBA and the amino groups (−NH2) of CN. Furthermore, the −B(OH)2 of PTBA facilitates the uniform dispersion of the co‐catalyst Pt. This work provides an effective strategy for constructing efficient tightly connected polymer semiconductor/CN heterojunction photocatalysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3