Converting Conventional Host to TADF Sensitizer and Hot‐Exciton Emitter in Donor‐Adamantane‐Acceptor Triads for Blue OLEDs: A Computational Study

Author:

Ramalingam Mahaan1,John Bosco Aruljothy2,Irudaya Jothi A3

Affiliation:

1. SRMIST: SRM Institute of Science and Technology (Deemed to be University) Chemistry INDIA

2. SRM Institute of Science and Technology (Deemed to be University) Chemistry 12th Floor University Building SRM Nagar Kattankulathur 603203 Chengalpattu INDIA

3. St Joseph's College Tiruchirappalli Chemistry 620024 INDIA

Abstract

Exploiting triplet excitons in TADF sensitizers and hot‐exciton emitters has attracted considerable attention and interest in recent studies on the design and development of blue OLEDs. The structural and optical property relationship of adamantane (Ad) core appended with four different strengths of donor and seven acceptor units were investigated using DFT and TD‐DFT methods. The theoretical studies revealed that increased donor and acceptor strength on adamantane building block leads to: (i) a decrease in ionization potentials and an increase in electron affinities, (ii) a decrease in singlet energies (ES) and the S1‐T1 energy gaps (∆EST); (iii) decreased SOC magnitudes between S1‐T1 states; (iv) increased RISC rate from the Tn to S1 states, demonstrating an increased tendency for upconversion of triplet excitons from the Tn to S1 state. In addition, low exchange energy causes excited state characteristics of molecules to shift from HLCT to CT nature in the S1 state. In contrast, the T1 states retain their LE character, resulting in higher triplet energies (ET). The adamantane molecular systems appended with P‐DMAC‐Donor‐Ad‐P‐DMB and Donor‐Ad‐P‐BODIPY based triads exhibit promising TADF sensitizer and hot‐exciton characteristics to find application as potential candidates for blue OLEDs when compared to experimentally reported conventional host.

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3