The Effect of Miscibility and Morphology of Porphyrin Donors and Non‐Fullerene Acceptors on Exciton Dissociation Processes: A Quantum Chemical and Molecular Dynamics Study

Author:

Wu Li‐Na12,Li Ming‐Yang2,Huang Jiu‐Chang2,Sun Guang‐Yan32ORCID

Affiliation:

1. Department of Chemistry Baicheng Normal University Baicheng 137000 P.R. China

2. Department of Chemistry Faculty of Science Yanbian University Yanji 133002 Jilin P.R. China

3. School of Applied Chemistry and Materials Zhuhai College of Science and Technology Zhuhai 519041 Guangdong P.R. China

Abstract

AbstractPorphyrins and their derivatives have been employed extensively in organic solar cells (OSCs) in recent years. However, a deeper understanding of the exciton dissociation process for the porphyrin donor/non‐fullerene acceptor (NFA) interface is still lacking. Herein, we have combined quantum chemistry and molecular dynamics simulations to explore the combination of mono and dimer porphyrin donors with various types of NFAs. The work reveals that the key issue lies in the exciton dissociation process of porphyrin materials, which have strong crystallinity to increase spacing (more than 5.0 Å), resulting in lesser miscibility and weaker intermolecular π‐π stacking. The pathway for exciton dissociation will be limited by the small number of high‐energy charge transfer (CT) states. To solve the above‐mentioned issues, we implement an improved strategy for modifying the side chain of the terminal unit, reducing the stacking distance to 4.4 Å, while the number of CT states reaches up to 40 % (3/A3 style 1). Additionally, the results also indicate the development potential for all porphyrin OSCs, particularly, the charge recombination (kCR) rate of the 1/Rf‐Iso system is lowered by nearly nine orders of magnitude. This research may offer fresh perspectives for extending the application range of porphyrin materials in OSCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3