Improving Photophysical Properties of Deazaflavin Derivatives by Acrylaldehyde Bridging: A Theoretical Investigation

Author:

Guo Huimin1ORCID,Liu Siyu1,Liu Xin1ORCID,Zhao Jianzhang1ORCID

Affiliation:

1. School of Chemistry Dalian University of Technology No. 2, Linggong Road 116024 Dalian P. R. China

Abstract

AbstractThe electronic structure and photophysical properties of several acrylaldehyde‐bridged deazaflavin derivatives (cFLs) were investigated theoretically. The impact of acrylaldehyde bridging on photophysical properties of deazaflavin (cFL) is strongly site‐dependent. Specifically, the change of adiabatic energy of electronic transitions(ΔEad) and vibronic coupling promote fluorescent emission to be comparable to internal conversion of cFL and cFL4 (both C5−C6 and C9−N10 bridged, but C9−N10 bridged by propene), turning them eligible as fluorescent sensors. As El‐Sayed's rule is satisfied in cFL1(C5−C6 bridged), cFL2(C9−N10 bridged) and cFL3(both C5−C6 and C9−N10 bridged), intersystem crossing from first singlet excited state to triplet excited states (Tn) become dominant and the evolution of excited cFLs from T1 appears vital. The rate constants of photophysical processes indicate these cFLs are of dominantly high steady state T1 concentration and are potential triplet sensitizers. We expect the findings would pave the way for rational design of novel cFLs with extraordinary photophysical properties.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3