Exploring the impact of language models, such as ChatGPT, on student learning and assessment

Author:

Zirar Araz1ORCID

Affiliation:

1. Department of Management, Huddersfield Business School University of Huddersfield Huddersfield UK

Abstract

AbstractRecent developments in language models, such as ChatGPT, have sparked debate. These tools can help, for example, dyslexic people, to write formal emails from a prompt and can be used by students to generate assessed work. Proponents argue that language models enhance the student experience and academic achievement. Those concerned argue that language models impede student learning and call for a cautious approach to their adoption. This paper aims to provide insights into the role of language models in reshaping student learning and assessment in higher education. For that purpose, it probes the impact of language models, specifically ChatGPT, on student learning and assessment. It also explores the implications of language models in higher education settings, focusing on their effects on pedagogy and evaluation. Using the Scopus database, a search protocol was employed to identify 25 articles based on relevant keywords and selection criteria. The developed themes suggest that language models may alter how students learn and are assessed. While language models can provide information for problem‐solving and critical thinking, reliance on them without critical evaluation adversely impacts student learning. Language models can also generate teaching and assessment material and evaluate student responses, but their role should be limited to ‘play a specific and defined role’. Integration of language models in student learning and assessment is only helpful if students and educators play an active and effective role in checking the generated material's validity, reliability and accuracy. Propositions and potential research questions are included to encourage future research.

Publisher

Wiley

Subject

Education

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3