Valorization of kapok fiber by phosphorylation with a reactive phosphorus‐ and nitrogen‐containing flame retardant for enhanced fire safety

Author:

Zhang Jing‐Fang123,Tang Ren‐Cheng123ORCID

Affiliation:

1. College of Textile and Clothing Engineering Soochow University Suzhou China

2. Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC) Soochow University Suzhou China

3. China National Textile and Apparel Council Key Laboratory of Natural Dyes Soochow University Suzhou China

Abstract

AbstractKapok fiber (KF) with a naturally hollow structure has found an increasing application in filling and composite materials, most of which have a demand of flame retardancy. To realize this high‐value utilization, KF was phosphorylated by a reactive phosphorus‐ and nitrogen‐containing flame retardant for enhanced fire safety. The flame retardant was first synthesized by the reaction of urea and diethylene triamine pentakis (methyl phosphonic acid) (a commercially available scale inhibitor) with low cost, and then, applied in the phosphorylation of KF in the presence of dicyandiamide. In thermogravimetric analysis, phosphorylated KF showed 38.1% residue weight in nitrogen and 10.2% residue weight in air at 700°C, whereas the residue weight of KF was 8.4% in nitrogen and 1.5% in air. In microcalorimetric analysis, the heat release capacity and total heat release of phosphorylated KF displayed a reduction of 81% and 55%, respectively. In vertical combustion test, phosphorylated KF was difficult to ignite and had no afterburning or smoldering. The tests indicated that phosphorylated KF had excellent charring properties, low heat release, and good flame retardancy. This work suggests a promising strategy of enhancing the flame retardancy of KF and increasing its applicability in filling and composite materials.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3