Compressed representation of brain genetic transcription

Author:

Ruffle James K.1ORCID,Watkins Henry1ORCID,Gray Robert J.1ORCID,Hyare Harpreet1ORCID,Thiebaut de Schotten Michel23,Nachev Parashkev1ORCID

Affiliation:

1. Queen Square Institute of Neurology, University College London London UK

2. Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives‐UMR 5293, CNRS, CEA, University of Bordeaux Bordeaux France

3. Brain Connectivity and Behaviour Laboratory Paris France

Abstract

AbstractThe architecture of the brain is too complex to be intuitively surveyable without the use of compressed representations that project its variation into a compact, navigable space. The task is especially challenging with high‐dimensional data, such as gene expression, where the joint complexity of anatomical and transcriptional patterns demands maximum compression. The established practice is to use standard principal component analysis (PCA), whose computational felicity is offset by limited expressivity, especially at great compression ratios. Employing whole‐brain, voxel‐wise Allen Brain Atlas transcription data, here we systematically compare compressed representations based on the most widely supported linear and non‐linear methods—PCA, kernel PCA, non‐negative matrix factorisation (NMF), t‐stochastic neighbour embedding (t‐SNE), uniform manifold approximation and projection (UMAP), and deep auto‐encoding—quantifying reconstruction fidelity, anatomical coherence, and predictive utility across signalling, microstructural, and metabolic targets, drawn from large‐scale open‐source MRI and PET data. We show that deep auto‐encoders yield superior representations across all metrics of performance and target domains, supporting their use as the reference standard for representing transcription patterns in the human brain.

Funder

Medical Research Council

Wellcome Trust

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3