Direct observation of negative cooperativity in a detoxification enzyme at the atomic level by Electron Paramagnetic Resonance spectroscopy and simulation

Author:

Bogetti Xiaowei1,Bogetti Anthony1,Casto Joshua1,Rule Gordon2,Chong Lillian1,Saxena Sunil1ORCID

Affiliation:

1. Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania USA

2. Department of Biological Sciences Carnegie Mellon University Pittsburgh Pennsylvania USA

Abstract

AbstractThe catalytic activity of human glutathione S‐transferase A1‐1 (hGSTA1‐1), a homodimeric detoxification enzyme, is dependent on the conformational dynamics of a key C‐terminal helix α9 in each monomer. However, the structural details of how the two monomers interact upon binding of substrates is not well understood and the structure of the ligand‐free state of the hGSTA1‐1 homodimer has not been resolved. Here, we used a combination of electron paramagnetic resonance (EPR) distance measurements and weighted ensemble (WE) simulations to characterize the conformational ensemble of the ligand‐free state at the atomic level. EPR measurements reveal a broad distance distribution between a pair of Cu(II) labels in the ligand‐free state that gradually shifts and narrows as a function of increasing ligand concentration. These shifts suggest changes in the relative positioning of the two α9 helices upon ligand binding. WE simulations generated unbiased pathways for the seconds‐timescale transition between alternate states of the enzyme, leading to the generation of atomically detailed structures of the ligand‐free state. Notably, the simulations provide direct observations of negative cooperativity between the monomers of hGSTA1‐1, which involve the mutually exclusive docking of α9 in each monomer as a lid over the active site. We identify key interactions between residues that lead to this negative cooperativity. Negative cooperativity may be essential for interaction of hGSTA1‐1 with a wide variety of toxic substrates and their subsequent neutralization. More broadly, this work demonstrates the power of integrating EPR distances with WE rare‐events sampling strategy to gain mechanistic information on protein function at the atomic level.

Funder

National Science Foundation

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3