Exhaled aerosols and saliva droplets measured in time and 3D space: Quantification of pathogens flow rate applied to SARS‐CoV‐2

Author:

Roth Adrian1,Stiti Mehdi1,Frantz David1,Corber Andrew2,Berrocal Edouard1ORCID

Affiliation:

1. Department of Physics Faculty of Engineering Lund University Lund Sweden

2. Aerospace Research Centre National Research Council of Canada Ottawa Canada

Abstract

AbstractSARS‐CoV‐2 and its ever‐emerging variants are spread from host‐to‐host via expelled respiratory aerosols and saliva droplets. Knowing the number of virions which are exhaled by a person requires precise measurements of the size, count, velocity and trajectory of the virus‐laden particles that are ejected directly from the mouth. These measurements are achieved in 3D, at 15,000 images/s, and are applied when speaking, yelling and coughing. In this study, 33 events have been analysed by post‐processing ∼500,000 images. Using these data, the flow rates of SARS‐CoV‐2 virions have been evaluated. At high concentrations, 107 virions/mL, it is found that 136–231 virions are ejected during a single cough, where the virion flow rate peak is capable of reaching 32 virions within a millisecond. This peak can reach tens of virions/ms when yelling but reduced to only a few virions/ms when speaking. At medium concentrations, ∼105 virions/mL, those results are hundreds of times lower. The total number of virions that are ejected when yelling at 110 dB, instead of speaking at 85 dB, increases by two‐ to threefold. From the measured data analysed in this article, the flow rate of other diseases, such as influenza, tuberculosis or measles, can also be estimated. As these data are openly accessible, they can be used by modellers for the simulation of saliva droplet transport and evaporation, allowing to further advance our understanding of airborne pathogen transmission.Key points Advanced, optimized and combined laser‐based imaging techniques for temporally sizing and tracking respiratory droplets and aerosols. Understanding how pathogens are being ejected from the mouth when speaking, yelling and coughing. Quantifying and analysing the variation of SARS‐CoV‐2 flow rates emission during exhalation.

Funder

Crafoordska Stiftelsen

Vetenskapsrådet

Stiftelsen för Strategisk Forskning

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3