Affiliation:
1. Department of Engineering Mechanics Dalian University of Technology Dalian Liaoning 116024 China
2. Research and Development Center Sinoma Wind Power Blade Co., Ltd. Beijing 100192 China
Abstract
AbstractMolecular dynamics method is employed to characterize the mechanical properties of polydimethylsiloxane (PDMS) materials reinforced by graphene nanoplatelets (GNPs). Modeling results demonstrate that the addition of GNPs to PDMS significantly improves the damping properties of PDMS at high temperatures. The underlying physical mechanism is further investigated, and it is found that the interfacial interactions between the GNPs and PDMS play a crucial role in the energy dissipation capabilities. At elevated temperatures, a decrease in the interaction energy between the GNPs and PDMS matrix is observed, increasing the interfacial shipment, and improving the energy dissipation. In addition, GNPs will reflect more impact energy at a higher temperature. This study provides valuable insights into the use of GNPs for the improvement of the damping performance of PDMS materials at high temperatures.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Inorganic Chemistry,Polymers and Plastics,Organic Chemistry,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献