Comparison of Linear and Ring Polymers Partitioning into Pores Using Random Walks and Self‐Avoiding Walks Models

Author:

Litle Christopher Alexander1,Wang Yongmei1ORCID

Affiliation:

1. Department of Chemistry The University of Memphis Memphis Tennessee 38154 USA

Abstract

AbstractMonte Carlo simulations that examine the partitioning of dilute solutions of ring or linear chains into a slit pore using two chain models, the random‐walk (RW) model and the self‐avoiding walk (SAW) model are presented. The partitioning coefficients K for the ring and the linear chains at the surface interaction both under the critical adsorption point (CAP) and above the CAP are compared. In both chain models, K for the ring remains larger than K for the linear chains. The ring chain crosses over the point K = 1 at a weaker surface interaction than the linear chain. When extrapolated to infinite chain length, the cross‐over point for the ring and linear chain becomes the same (within statistical errors) for the RW model but remains different for the SAW model. The density profiles of the ring within the pore reveal the development of humps near the wall as the surface interaction crosses over the CAP. The excluded volume interaction in the SAW model additionally impacts the partitioning of chains in a solution consisting of a binary mixture of ring and linear chains and makes the K values in a binary mixture differ from the monodispersed solutions.

Publisher

Wiley

Subject

Materials Chemistry,Inorganic Chemistry,Polymers and Plastics,Organic Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3