Potential of Phenylalanine‐, Tryptophan‐, and Tyrosine‐MOF‐5 Composites for Selective Carbon Dioxide and Methane Adsorption

Author:

Moyosore Abdullahi123ORCID,Ahmad Haslina12,Latif Muhammad Alif Muhammad124,Borzehandani Mostafa Yousefzadeh12,AbdulRahman Mohd Basyaruddin12,Abdelmalek Emilia12

Affiliation:

1. Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang Selangor 43400 Malaysia

2. Integrated Chemical Biophysics Research Faculty of Science Universiti Putra Malaysia UPM Serdang Selangor 43400 Malaysia

3. Chemistry Department Federal College of Education Katsina P.M.B Katsina State 2041 Nigeria

4. Centre of Foundation Studies for Agricultural Science Universiti Putra Malaysia UPM Serdang Selangor 43400 Malaysia

Abstract

AbstractMetal‐organic frameworks (MOFs) have emerged as versatile materials with exceptional properties, including high porosities, large surface areas, and remarkable stabilities, making them attractive for various applications. MOF‐5 stands out for its thermal stability and surface area, making it promising for diverse applications, including drug delivery and gas adsorption. This study explores the potential of amino acid MOF (AA‐MOF) composites, integrating phenylalanine, tryptophan, and tyrosine, for selective CO2 and CH4 adsorption using grand canonical Monte Carlo (GCMC) simulations. The impact of amino acid composition and spatial arrangement within MOF‐5 on selective CO2 and CH4 adsorption performance have been investigated. The results indicate that tryptophan‐MOF‐5 exhibits the highest CO2 uptake due to the interaction between CO2 and tryptophan, while phenylalanine‐MOF‐5 demonstrated the lowest affinity for gas adsorption. Radial distribution function (RDF) analysis reveals distinct gas distribution patterns within the composites, with tryptophan playing a dominant role in gas adsorption. Additionally, analysis of total energy, enthalpy of adsorption, and Henry's coefficient provide insights into the thermodynamic aspects of gas adsorption onto AA‐MOF composites. This study enhances the understanding of the fundamental mechanisms underlying CO2 and CH4 selective adsorption in amino acid MOF composites, facilitating the development of efficient gas separation technologies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3