Affiliation:
1. Laboratory of Physical Chemistry Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
2. Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
Abstract
AbstractThe rational development of sustainable polymeric materials demands tunable properties using mixtures of polymers with chemical variations. At the same time, the sheer number of potential variations and combinations makes experimentally or numerically studying every new mixture impractical. A direct predictive tool quantifying how material properties change when molecular features change provides a less time‐ and resource‐consuming route to optimization. Numerically solving Flory–Huggins theory provides such a tool for mono‐disperse mixtures with a limited number of components, but for multi‐component systems the large number of equations makes numerical computations challenging. Approximate solutions to Flory–Huggins theory relating miscibility and solubility to molecular features are presented. The set of approximate relations show a wider range of accuracy compared to existing approximations. The combination of the analytical, lower‐order, and more accurate higher‐order approximations together contribute to a broader applicability and extensibility of Flory–Huggins theory.
Subject
Materials Chemistry,Inorganic Chemistry,Polymers and Plastics,Organic Chemistry,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献