Dissipative Particle Dynamics Study on the Phase Region of Spatial Gradient Materials Produced by Photoinduced Isomerization

Author:

Li Hui1ORCID,Gao Kaiming1,Zhao Haitao1,Xue Zijian1,Chen Zhenbin1,Lu Xuefeng1,Liu Hong2

Affiliation:

1. State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous Metals, School of Material Science and Engineering Lanzhou University of Technology Lanzhou China

2. Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment South China Normal University Guangzhou China

Abstract

AbstractSpatial gradient materials occupy an important research position in the field of functional materials with their unique porous structure. Gradient changes in pore size and density distribution have received extensive attention in the fields of biomimetic and smart materials. The gradient transition law is mathematically related to the driving force of isomerization reaction and component phase separation. In this study, a dissipative particle dynamics simulation is used to introduce photoisomerization reactions into the system. Lambert's law is used to construct a reaction model for the variation of light intensity with irradiation depth, and a gradient structure with a spatial transition law is obtained. The effects of the extinction coefficient ε, the initial reaction probability Pr0, and the interactions α(A,B) between the isomerized molecules as well as the viscosity on the formation of the gradient structure are investigated in detail. Furthermore, the mathematical proportionality between the size of the phase region and interfacial energy of the two phases is elucidated. This study provides preliminary computational insights into the factors affecting the photoinduced phase separation process of polymeric gradient materials. It may help to develop effective strategies to improve the phase separation and properties of polymer gradient materials in subsequent studies.

Funder

Shenyang National Laboratory for Materials Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3