Volumetric and Energetic Properties of Polystyrene and Polyethylene Oxide Affected by Thermal Cycling

Author:

Minisini Benoit1,Soldera Armand2ORCID

Affiliation:

1. Materials Design SARL Montrouge 92120 France

2. Laboratory of Physical Chemistry of Matter (LPCM) Department of Chemistry Université de Sherbrooke Sherbrooke Quebec J1K 2R1 Canada

Abstract

AbstractPolymers are known to exhibit hysteresis in their thermal and volumetric properties between cooling and heating at the glass transition. A thorough investigation of this hysteresis using atomistic simulation is not proposed until now. In this work, therefore, the glass transition is studied through heating and cooling protocols at constant rate for two polymers, polystyrene (PS) and polyethylene oxide (PEO), with different molecular weights. To achieve this objective, the analysis is carried out by plotting against temperature, specific volume, coefficient of thermal expansion, total energy, and constant volume heat capacity. The calculated properties for PS and PEO are found to be in good agreement with experimental data, confirming the accuracy of the TraPPE force field for these polymers. The glass transition temperature (Tg) range remains the same regardless of the properties. Moreover, the difference in properties between heating and cooling processes systematically leads to a peak at the same temperature, associated with Tg. Finally, starting from a low temperature, the polymer chains remain mainly in a potential well as the temperature rises, while during cooling the exploration of the configuration space continues up to the temperature where no torsional changes are observed.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Materials Chemistry,Inorganic Chemistry,Polymers and Plastics,Organic Chemistry,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3