Transcriptomic analysis of the defense response in “Cabernet Sauvignon” grape leaf induced by Apolygus lucorum feeding

Author:

Yao Heng12ORCID,Gao Suhong12,Sun Tianhua3ORCID,Zhou Guona3,Lu Changkuan1,Gao Baojia3ORCID,Chen Wenshu12ORCID,Liang Yiming12ORCID

Affiliation:

1. College of Agronomy and Biotechnology Hebei Normal University of Science and Technology Changli Hebei China

2. Hebei Key Laboratory of Crop Stress Biology (in Preparation) Changli Hebei China

3. College of Forestry Hebei Agricultural University Baoding Hebei China

Abstract

AbstractTo investigate the molecular mechanism of the defense response of “Cabernet Sauvignon” grapes to feeding by Apolygus lucorum, high‐throughput sequencing technology was used to analyze the transcriptome of grape leaves under three different treatments: feeding by A. lucorum, puncture injury, and an untreated control. The research findings indicated that the differentially expressed genes were primarily enriched in three aspects: cellular composition, molecular function, and biological process. These genes were found to be involved in 42 metabolic pathways, particularly in plant hormone signaling metabolism, plant‐pathogen interaction, MAPK signaling pathway, and other metabolic pathways associated with plant‐induced insect resistance. Feeding by A. lucorum stimulated and upregulated a significant number of genes related to jasmonic acid and calcium ion pathways, suggesting their crucial role in the defense molecular mechanism of “Cabernet Sauvignon” grapes. The consistency between the gene expression and transcriptome sequencing results further supports these findings. This study provides a reference for the further exploration of the defense response in “Cabernet Sauvignon” grapes by elucidating the expression of relevant genes during feeding by A. lucorum.

Funder

Hebei Normal University of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3