Prediction of the biomechanical behaviour of the lumbar spine under multi‐axis whole‐body vibration using a whole‐body finite element model

Author:

Zhang Chi1ORCID,Guo Li‐Xin1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation Northeastern University Shenyang China

Abstract

AbstractLow back pain has been reported to have a high prevalence among occupational drivers. Whole‐body vibration during the driving environment has been found to be a possible factor leading to low back pain. Vibration loads might lead to degeneration and herniation of the intervertebral disc, which would increase incidence of low back problems among drivers. Some previous studies have reported the effects of whole‐body vibration on the human body, but studies on the internal dynamic responses of the lumbar spine under multi‐axis vibration are limited. In this study, the internal biomechanical response of the intervertebral disc was extracted to investigate the biomechanical behaviour of the lumbar spine under a multi‐axial vibration in a whole‐body environment. A whole‐body finite element model, including skin, soft tissues, the bone skeleton, internal organs and a detailed ligamentous lumbar spine, was used to provide a whole‐body condition for analyses. The results showed that both vibrations close to vertical and fore‐and‐aft resonance frequencies would increase the transmission of vibrations in the intervertebral disc, and vertical vibration might have a greater effect on the lumbar spine than fore‐and‐aft vibration. The larger deformation of the posterior region of the intervertebral disc in a multi‐axis vibration environment might contribute to the higher susceptibility of the posterior region of the intervertebral disc to injury. The findings of this study revealed the dynamic behaviours of the lumbar spine in multi‐axis vehicle vibration conditions, and suggested that both vertical and fore‐and‐aft vibration should be considered for protecting the lumbar health of occupational drivers.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3