Satisfying strict deadlines for cellular Internet of Things through hybrid multiple access

Author:

Gamgam Onur Berkay1ORCID,Karasan Ezhan1

Affiliation:

1. Electrical and Electronics Engineering Bilkent University Ankara Turkey

Abstract

AbstractLatency‐constrained aspects of cellular Internet of Things (IoT) applications rely on Ultra‐Reliable and Low Latency Communications (URLLC), which highlight research on satisfying strict deadlines. In this study, we address the problem of latency‐constrained communications with strict deadlines under average power constraint using Hybrid Multiple Access (MA), which consists of both Orthogonal MA (OMA) and power domain Non‐Orthogonal MA (NOMA) as transmission scheme options. We aim to maximize the timely throughput, which represents the average number of successfully transmitted packets before deadline expiration, where expired packets are dropped from the buffer. We use Lyapunov stochastic optimization methods to develop a dynamic power assignment algorithm for minimizing the packet drop rate while satisfying time average power constraints. Moreover, we propose a flexible packet dropping mechanism called Early Packet Dropping (EPD) to detect likely to become expired packets and drop them immediately. Numerical results show that Hybrid MA improves the timely throughput compared to conventional OMA by up toand on average by more than. With EPD, these timely throughput gains improve toand, respectively.

Publisher

Wiley

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3