Investigation on mechanical, gas barrier, and biodegradation properties of graphene oxide reinforced bovine trimmings derived collagen biocomposite

Author:

Paul Adhir Chandra1,Uddin Md. Elias1ORCID,Layek Rama Kanta2,Saha Tomas3ORCID

Affiliation:

1. Department of Leather Engineering, Faculty of Mechanical Engineering Khulna University of Engineering & Technology Khulna Bangladesh

2. Department of Separation Science, School of Engineering Science LUT University Lahti Finland

3. Footwear Research Center, University Institute Tomas Bata University in Zlin Zlin Czech Republic

Abstract

AbstractNow‐a‐days, let out a huge number of bovine trimmings based solid waste from tanneries has caused significant environmental concerns. To overcome this problem, this study emphasizes on bovine trimmings derived collagen based high‐performance composite with graphene oxide (Col‐GO) by using solvent evaporation method. The Col‐GO composite film formation was governed by plasticization with glycerol, crosslinking reaction of collagen chain; and H‐bonding interaction between GO and collagen functional groups. The Col‐GO composite films were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and contact angle measurements. FTIR and TGA results indicate that interfacial H‐bonding interaction between GO with collagen, and thermal stability of Col‐GO composites film. Contact angle results indicate that hydrophobicity of Col‐GO films was significantly enhanced compared to pure collagen film. The SEM analysis results indicate the homogeneous integration of GO in the Col‐GO composite film. The composite film exhibits improvement in tensile strength and Young's modulus (YM) by 45% and 33% respectively. The water and gas barrier properties of the composite film improved by 47.4%, 66.57%, and 87.34%, respectively compared to pure collagen film. The Col‐GO composite film showed excellent biodegradation in the soil burial test, degrading 79.47% in 42 days. The potential of the biodegraded Col‐GO composite sample as a biofertilizer has been investigated by cultivating Spinacia oleracea seeds. The Col‐GO composite film might be a very promising bio‐compostable flexible and sustainable packaging film alternative to plastic packaging made from oil.

Publisher

Wiley

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3