Plasticity of Arabidopsis rosette transcriptomes and photosynthetic responses in dynamic light conditions

Author:

Alameldin Hussien F.12ORCID,Montgomery Beronda L.1345ORCID

Affiliation:

1. DOE‐Plant Research Laboratory Michigan State University East Lansing Michigan USA

2. Agricultural Genetic Engineering Research Institute (AGERI) Agriculture Research Center (ARC) Giza Egypt

3. Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA

4. Department of Microbiology and Molecular Genetics Michigan State University East Lansing Michigan USA

5. Department of Biology Grinnell College Grinnell Iowa USA

Abstract

AbstractWith the high variability of natural growth environments, plants exhibit flexibility and resilience in regard to the strategies they employ to maintain overall fitness, including maximizing light use for photosynthesis, while simultaneously limiting light‐associated damage. We measured distinct parameters of photosynthetic performance of Arabidopsis thaliana plants under dynamic light regimes. Plants were grown to maturity then subjected to the following 5‐day (16 h light, 8 h dark) regime: Day 1 at constant light (CL) intensity during light period, representative of a common lab growth condition; Day 2 under sinusoidal variation in light intensity (SL) during the light period that is representative of changes occurring during a clear sunny day; Day 3 under fluctuating light (FL) intensity during the light period that simulates sudden changes that might occur with the movements of clouds in and out of the view of the sun; Day 4, repeat of CL; and Day 5, repeat of FL. We also examined the global transcriptome profile in these growth conditions based on obtaining RNA‐sequencing (RNA‐seq) data for whole plant rosettes. Our transcriptomic analyses indicated downregulation of photosystem I (PSI) and II (PSII) associated genes, which were correlated with elevated levels of photoinhibition as indicated by measurements of nonphotochemical quenching (NPQ), energy‐dependent quenching (qE), and inhibitory quenching (qI) under both SL and FL conditions. Furthermore, our transcriptomic results indicated downregulation of tetrapyrrole biosynthesis associated genes, coupled with reduced levels of chlorophyll under both SL and FL compared with CL, as well as downregulation of photorespiration‐associated genes under SL. We also noticed an enrichment of the stress response gene ontology (GO) terms for genes differentially regulated under FL when compared with SL. Collectively, our phenotypic and transcriptome analyses serve as useful resources for probing the underlying molecular mechanisms associated with plant acclimation to rapid light intensity changes in the natural environment.

Funder

National Science Foundation

Publisher

Wiley

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3