Affiliation:
1. Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800 Talence France
Abstract
AbstractAge is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel‐wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state‐of‐the‐art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi‐disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts.
Funder
Agence Nationale de la Recherche
National Institutes of Health
Dana Foundation
National Institute of Child Health and Human Development
National Institute on Drug Abuse
National Institute of Mental Health
National Institute of Neurological Disorders and Stroke
Canadian Institutes of Health Research
GlaxoSmithKline
Michael J. Fox Foundation for Parkinson's Research
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献