Affiliation:
1. Faculty 2: Computer Science and Engineering University of Applied Sciences Frankfurt Frankfurt Germany
2. LAETA, INEGI, Faculty of Engineering University of Porto Porto Portugal
Abstract
AbstractThe emergence of new rapid prototyping techniques such as melt electrowriting and their application in the development of medical devices, enables new geometries for surgical meshes that were previously limited by current conventional manufacturing methods. The change in geometry allows a direct impact on the mechanical behavior of surgical meshes using identical polymers. The adaptation of the mechanical properties of surgical meshes, based on sinusoidal auxetic design with varying amplitude and number of waves per total fiber length, aims to improve biocompatibility by mimicking and matching the mechanical properties of vaginal soft tissue, which is not provided by current polypropylene nondegradable meshes. The auxetic design of the meshes can supply dimensionally stable pores under tensile load, which is a limitation of the current meshes. The mechanical properties can be controlled with mesh deformations up to 100%, Young's modulus ranging from 50 to 400 N/mm2 and a variable toe region. The printed meshes show an effective porosity of over 70% and are lightweight or ultra‐lightweight. By combining matching mechanical properties with good porosity and weight, 3D printed sinusoidal meshes, made of biodegradable Poly‐ε‐caprolactone, show promising results to improve surgical meshes for use in pelvic organ prolapse repair.
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献