High‐resolution magic angle spinning nuclear magnetic resonance of donor pancreatic tissue may predict islet viability prior to isolation

Author:

Slupsky Carolyn M.12ORCID,Sykes Brian D.1,Lakey Jonathan R. T.34

Affiliation:

1. Protein Engineering Network Centres of Excellence, 713 Heritage Medical Research Building University of Alberta Edmonton Alberta Canada

2. Department of Nutrition, and Department of Food Science and Technology University of California ‐ Davis Davis California USA

3. Surgical‐Medical Research Institute, 1074 Dentistry/Pharmacy Centre University of Alberta Edmonton Alberta Canada

4. Department of Surgery and Biomedical Engineering University of California ‐ Irvine Irvine California USA

Abstract

AbstractFor patients with type 1 diabetes mellitus complicated by severe hypoglycemia, clinical islet transplantation is an efficacious alternative to whole pancreas transplantation. While islet transplantation has improved over the last few years, there remain questions regarding its cost‐effectiveness and donor allosensitization, which is exacerbated when islets from more than one donor are required. Understanding the features of a pancreas that would provide viable islets prior to isolation may lead to development of an accurate assay that could identify suitable pancreases and provide significant cost savings to a clinical islet transplantation program. In this pilot study, solid‐state high‐resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy was used to assess samples of convenience of human pancreatic tissue taken prior to islet isolation both before and after incubation using the two‐layer perfluorocarbon (PFC)/University of Wisconsin (UW) solution cold‐storage method. We observed that, prior to incubation, human pancreatic tissue exhibited evidence of hypoxia with decreased peak integrals associated with glucose and increased peak integrals corresponding to lactate and free fatty acids. After incubation, we observed a reversal of the hypoxia‐induced damage, as integrals corresponding to glucose increased, and those corresponding to lactate and free fatty acid resonances decreased. Interestingly, a significant correlation between the ratio of the glucose integral (at 3.0–4.5 ppm) to the sum of the fatty acid (at 0.9 ppm) and lactate + fatty acid (at 1.3 ppm) integrals and glucose responsiveness, a measure of islet viability, of the isolated islets, was observed after incubation in PFC/UW solution for pancreases that responded to PFC/UW solution incubation (p = 0.02). Notably, pancreases with little or no change in the integral ratio after PFC/UW solution incubation had poor recovery. These results suggest that tissue recovery is a key feature for determining islet cell viability, and further that HRMAS NMR may be a practical method to quickly assess human donor pancreatic tissue prior to islet isolation for clinical transplantation.

Funder

Alberta Heritage Foundation for Medical Research

Juvenile Diabetes Research Foundation International

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3