Notch Signaling Regulates Motor Neuron Differentiation of Human Embryonic Stem Cells

Author:

Ben-Shushan Etti1,Feldman Eva2,Reubinoff Benjamin E.13

Affiliation:

1. The Sidney and Judy Swartz Embryonic Stem Cell Research Center of The Goldyne Savad Institute of Gene Therapy Hadassah University Medical Center, Jerusalem, Israel

2. Department of Neurology, A. Alfred Taubman Medical Research Institute University of Michigan, Ann Arbor, Michigan, USA

3. The Department of Obstetrics and Gynecology Hadassah University Medical Center, Jerusalem, Israel

Abstract

Abstract In the pMN domain of the spinal cord, Notch signaling regulates the balance between motor neuron differentiation and maintenance of the progenitor state for later oligodendrocyte differentiation. Here, we sought to study the role of Notch signaling in regulation of the switch from the pMN progenitor state to differentiated motor neurons in a human model system. Human embryonic stem cells (hESCs) were directed to differentiate to pMN-like progenitor cells by the inductive action of retinoic acid and a Shh agonist, purmorphamine. We found that the expression of the Notch signaling effector Hes5 was induced in hESC-derived pMN-like progenitors and remained highly expressed when they were cultured under conditions favoring motor neuron differentiation. Inhibition of Notch signaling by a γ-secretase inhibitor in the differentiating pMN-like progenitor cells decreased Hes5 expression and enhanced the differentiation toward motor neurons. Conversely, over-expression of Hes5 in pMN-like progenitor cells during the differentiation interfered with retinoic acid- and purmorphamine-induced motor neuron differentiation and inhibited the emergence of motor neurons. Inhibition of Notch signaling had a permissive rather than an inductive effect on motor neuron differentiation. Our results indicate that Notch signaling has a regulatory role in the switch from the pMN progenitor to the differentiated motor neuron state. Inhibition of Notch signaling can be harnessed to enhance the differentiation of hESCs toward motor neurons. Stem Cells  2015;33:403–415

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3