Preparation of GNP/SBR thermal conductivity composites with high strength and toughness by synergistic construction of interfacial multiple non‐covalent and covalent bonds

Author:

Li Fangshan12ORCID,Wang Heng3,Ke Yuchao4,Hu Yuan2,Xia Ru345

Affiliation:

1. Technology R&D Department AnHui ADZD Rubber Technology Development Co., Ltd. Hefei China

2. State Key Laboratory of Fire Science University of Science and Technology of China Hefei China

3. School of Chemistry & Chemical Engineering Anhui University Hefei China

4. Anhui Province Key Laboratory of High‐Performance Rubber Materials and Products, Anhui University Hefei China

5. Anhui Province Key Laboratory of Environment‐Friendly Polymer Materials Anhui University Hefei People's Republic of China

Abstract

Abstract[AMIm]Cl@GNP/SBR composites were prepared by blending ionic liquid 1‐allyl‐3‐methylimidazolium chloride salt([AMIm]Cl) modified graphene nanoplatelets (GNP) and styrene‐butadiene rubber (SBR). The mechanical and thermal properties as well as the structure–activity relationship of the obtained composites based on the modified filler were investigated under the synergistic effect of non‐covalent and covalent bonding. The experimental results indicated that the modification of GNP by [AMIm]Cl occurred under mild conditions. The dispersibility of [AMIm]Cl@GNP in SBR was enhanced by its participation in vulcanization and the synergistic effect of non‐covalent and covalent cross‐linking networks such as cation‐π, π‐π, and hydrogen bonds. This improvement led to an increase in the interfacial bond strength of the composites and a reduction in the interfacial thermal resistance. These effects resulted in both reinforcement and thermal conductivity properties. The tensile strength and elongation at break of [AMIm]Cl@GNP/SBR composites increased from 18.2 to 22.9 MPa and from 737.9% to 923.5%, respectively, when the modification ratio of [AMIm]Cl was 1% and the loading of [AMIm]Cl@GNP was only 4 phr (mass ratio). At the same time, the thermal conductivity in the vertical direction of the composites increased from 0.25 to 0.44 W/(m·K), and the thermal conductivity in the horizontal direction increased from 0.27 to 0.81 W/(m·K).Highlights Modified powder [AMIm]Cl@graphene nanoplatelets were prepared; [AMIm]Cl@graphene nanoplatelet/styrene‐butadiene rubber blend was prepared; Mechanical properties of blends significantly improved over blank; The horizontal thermal conductivity of the blends increases obviously; The vertical thermal conductivity of the blends was improved.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3