Descriptive inference using large, unrepresentative nonprobability samples: An introduction for ecologists

Author:

Boyd Robin J.1,Stewart Gavin B.2,Pescott Oliver L.1

Affiliation:

1. UK Centre for Ecology & Hydrology Wallingford UK

2. Evidence Synthesis Lab School of Natural and Environmental Science, University of Newcastle Newcastle‐upon‐Tyne UK

Abstract

AbstractBiodiversity monitoring usually involves drawing inferences about some variable of interest across a defined landscape from observations made at a sample of locations within that landscape. If the variable of interest differs between sampled and nonsampled locations, and no mitigating action is taken, then the sample is unrepresentative and inferences drawn from it will be biased. It is possible to adjust unrepresentative samples so that they more closely resemble the wider landscape in terms of “auxiliary variables.” A good auxiliary variable is a common cause of sample inclusion and the variable of interest, and if it explains an appreciable portion of the variance in both, then inferences drawn from the adjusted sample will be closer to the truth. We applied six types of survey sample adjustment—subsampling, quasirandomization, poststratification, superpopulation modeling, a “doubly robust” procedure, and multilevel regression and poststratification—to a simple two‐part biodiversity monitoring problem. The first part was to estimate the mean occupancy of the plant Calluna vulgaris in Great Britain in two time periods (1987–1999 and 2010–2019); the second was to estimate the difference between the two (i.e., the trend). We estimated the means and trend using large, but (originally) unrepresentative, samples from a citizen science dataset. Compared with the unadjusted estimates, the means and trends estimated using most adjustment methods were more accurate, although standard uncertainty intervals generally did not cover the true values. Completely unbiased inference is not possible from an unrepresentative sample without knowing and having data on all relevant auxiliary variables. Adjustments can reduce the bias if auxiliary variables are available and selected carefully, but the potential for residual bias should be acknowledged and reported.

Funder

Natural Environment Research Council

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3