Predictive modelling of brain disorders with magnetic resonance imaging: A systematic review of modelling practices, transparency, and interpretability in the use of convolutional neural networks

Author:

O'Connell Shane1ORCID,Cannon Dara M.2,Broin Pilib Ó.1

Affiliation:

1. School of Mathematical and Statistical Sciences, College of Science and Engineering University of Galway Galway Ireland

2. Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of MedicineNursing and Health Sciences University of Galway Galway Ireland

Abstract

AbstractBrain disorders comprise several psychiatric and neurological disorders which can be characterized by impaired cognition, mood alteration, psychosis, depressive episodes, and neurodegeneration. Clinical diagnoses primarily rely on a combination of life history information and questionnaires, with a distinct lack of discriminative biomarkers in use for psychiatric disorders. Symptoms across brain conditions are associated with functional alterations of cognitive and emotional processes, which can correlate with anatomical variation; structural magnetic resonance imaging (MRI) data of the brain are therefore an important focus of research, particularly for predictive modelling. With the advent of large MRI data consortia (such as the Alzheimer's Disease Neuroimaging Initiative) facilitating a greater number of MRI‐based classification studies, convolutional neural networks (CNNs)—deep learning models well suited to image processing tasks—have become increasingly popular for research into brain conditions. This has resulted in a myriad of studies reporting impressive predictive performances, demonstrating the potential clinical value of deep learning systems. However, methodologies can vary widely across studies, making them difficult to compare and/or reproduce, potentially limiting their clinical application. Here, we conduct a qualitative systematic literature review of 55 studies carrying out CNN‐based predictive modelling of brain disorders using MRI data and evaluate them based on three principles—modelling practices, transparency, and interpretability. We propose several recommendations to enhance the potential for the integration of CNNs into clinical care.

Funder

Science Foundation Ireland

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3