Comparison of dairy manure versus compost effects on short‐term nitrogen mineralization and microbial biomass in organic annual forage production system

Author:

Hurisso Tunsisa T.1ORCID,Davis Jessica G.2,Stonaker Frank H.3,Goldhamer Daniel A.2,Brummer Joe E.2

Affiliation:

1. College of Agriculture, Environmental and Human Sciences Lincoln University of Missouri Jefferson City Missouri USA

2. Department of Soil and Crop Sciences Colorado State University Fort Collins Colorado USA

3. Department of Horticulture and Landscape Architecture Colorado State University Fort Collins Colorado USA

Abstract

AbstractSince the adoption of national rules for organic agriculture in the United States, there has been a continued interest in meeting crop nitrogen (N) needs using animal manure. However, a lack of consistent information on the N supplying potential of manure creates uncertainty for farmers and often leads to overapplication, which can negatively impact both crop productivity and environmental sustainability. We investigated short‐term N mineralization and microbial biomass carbon (MBC) and nitrogen (MBN) following dairy manure (DM) and its compost (DMC) application to organic annual forage production system. N mineralization was determined based on the change in mineral N during a ≤75‐day in‐field soil core‐resin bag incubation. DM and DMC application rates were targeted to supply 123 and 56 kg potentially plant‐available nitrogen (PAN) ha−1 in the first and second year of application, respectively. Net N mineralization exhibited a range of 42–277 kg N ha−1 in Year 1 and 31–54 kg N ha−1 in Year 2 across amendment treatments and increased over the course of incubation duration in both years. The proportion of total N added that was mineralized in Year 1 was greater from DM than DMC (≤35% vs. ≤7%, respectively), suggesting the inability of DMC to supply optimal levels of N to annual forages in the first crop season. In Year 2, net N mineralization did not differ between DM and DMC, but was significantly less in the unamended control than both amendments. MBC and MBN were more influenced by seasonality and soil sampling depth than by organic amendments.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3