Varietal differences in stem assimilate translocation and lodging resistance of rice under reduced nitrogen input

Author:

Li Guohui1ORCID,Yang Zijun1,Zhang Yan1,Zhou Cheng1,Zhang Chenhui1,Xu Jiwei1,Zhu Changjin1,Xu Ke1

Affiliation:

1. Innovation Center of Rice Cultivation Technology in Yangtze River Valley of Ministry of Agriculture, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology, Yangzhou University Yangzhou China

Abstract

AbstractThe low translocation rate of stem assimilates and lodging under high nitrogen conditions are major factors limiting the realization of the yield potential of rice. The objectives of this study were to (1) determine the characteristics of stem nonstructural carbohydrates (NSCs) translocation and lodging resistance in different types of rice varieties and (2) elucidate the responses of stem NSCs translocation and lodging resistance to reduced nitrogen (RN) input. Field experiments were conducted using four types of rice varieties with two nitrogen levels, including normal nitrogen (NN, namely, farmer's practice, 225 kg N ha−1 for indica conventional and indica hybrid rice and 300 kg N ha−1 for japonica conventional and indica–japonica hybrid rice in Jiangsu Province, China) and 20% RN (180 and 240 kg N ha−1, respectively). The results showed that there were significant differences in the stem NSCs translocation and lodging index of the basal stem among different types of varieties; indica hybrid rice was the highest, followed by indica conventional rice and indica–japonica hybrid rice, while japonica conventional rice was the lowest. The high activities of α‐amylase, β‐amylase, and sucrose phosphate synthase may contribute to high stem NSCs translocation. Correlation analysis revealed that NSCs translocation was significantly positively correlated with 1000‐grain weight, grain yield, and lodging index, while it was significantly negatively correlated with dry weight/length, dry weight/volume, and bending stress of the basal stem. Compared with NN, RN significantly improved NSCs translocation and had no significant effect on the lodging resistance‐related traits of the basal stem or grain yield. Therefore, this research indicates that a 20% reduction in nitrogen input can maintain grain yield by enhancing stem assimilate translocation without lodging resistance reduction and consequently synergizing nitrogen reduction, high yield, and lodging resistance.

Funder

Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3