Variability in bat morphology is influenced by temperature and forest cover and their interactions

Author:

Wood Heather12ORCID,Cousins Sara A. O.12ORCID

Affiliation:

1. Landscape, Environment & Geomatics, Department of Physical Geography Stockholm University Stockholm Sweden

2. Bolin Centre for Climate Research Stockholm University Stockholm Sweden

Abstract

AbstractMultiple climatic and landscape drivers have been linked to variations in bat body size and wing functional traits. Most previous studies used proxies rather than actual climate and land‐use data, and their interactions are rarely explored. We investigate whether higher summer average temperatures are driving decreasing bat body size as predicted by Bergmann's rule or increasing appendage size as per Allen's rule. We also explore whether temperature or resource availability (namely forest cover) is responsible for changes in wing functional traits. Using land‐use data from historical maps and national statistics combined with climatic data, we assessed the effect of temperature and resource availability on bat morphology. We used 464 museum specimens of three bat species (Eptesicus nilssonii, Pipistrellus pygmaeus, and Plecotus auritus), spanning 180 years, across a 1200 km latitudinal gradient. We found no evidence of higher summer average temperatures driving decreases in body size in bats. Jaw sizes of P. auritus and P. pygmaeus changed over time but in different directions. The geographical variation of forest cover was also related to differences in wing functional traits in two species. Crucially, there was a significant antagonistic interactive effect of forest and temperature on tip index in P. pygmaeus whereby above 14.5°C the relationship between forest and tip index actually reversed. This could indicate that higher temperatures promote more pointed wings, which may provide energetic benefits. Our results show the importance of including both climatic and land‐use variables when assessing trends in bat morphology and exploring interactions. Encouragingly, all three species have shown an ability to adapt their body size and functional traits to different conditions, and it could demonstrate their potential to overcome future negative impacts of climate and land‐use change.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Reference72 articles.

1. Bats and Roads

2. Can skull morphology be used to predict ecological relationships between bat species? A test using two cryptic species of pipistrelle

3. Bergmann C.(1848).Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe.https://books.google.se/books?id=EHo‐AAAAcAAJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3