Detailed analysis of the particle residence time distribution in a pressurized drop‐tube reactor

Author:

An Fengbo1ORCID,Dai Zhenghua2,Guhl Stefan1,Gräbner Martin1,Richter Andreas1

Affiliation:

1. Institute of Energy Process Engineering and Chemical Engineering Technische Universität Bergakademie Freiberg Freiberg Germany

2. School of Chemical Engineering and Technology Xinjiang University Urumqi China

Abstract

AbstractSolid fuel conversion in a pressurized drop‐tube reactor is studied in detail using a three‐dimensional computational fluid dynamics (CFD) model. The main focus is on analyzing individual particle trajectories and residence times, as these data are crucial for the precise experimental estimation of heterogeneous reaction kinetics. The numerical results were substantiated by radioactive tracer measurements carried out in different operating conditions. The numerical results reveal a complex gas flow that is affected by buoyancy due to a non‐homogeneous temperature distribution, which has a strong affect on the trajectories of particular particle size fractions. In this case, empirical residence time correlations for particles, as commonly used for the evaluation of heterogeneous kinetic measurements, lose their validity since the assumption of a plug flow is no longer valid. It can be shown that if CFD‐assisted data evaluation is used, a significant improvement in the measured heterogeneous reaction kinetics is feasible.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3